Overview of shortcut nitrogen removal pathways

Kartik Chandran Columbia University

Singapore International Water Week Water Convention 2022 April 20th, 2022

Nitrogen Cycling in WRRFs

Two ways of producing nitrite

- Oxidative production through Nitritation (outselection of NOB)
- Reductive production through Denitratation

Process	O_2 e- equivalents for NH_3 oxidation	COD e- equivalents for N ₂ production	
Full nitrification- denitrification	8	5	
Nitritation-Denitritation	6 (25% savings)	3 (40% savings)	
Partial nitritation-anammox	3 (62.5% savings)	0 (100% savings)	
Nitrification-Partial Denitratation-anammox	4 (50% savings)	1 (80% savings)	

• Actual savings with PdNA even higher when applied for N-polishing

Partial Nitritation

Differing strategies for NOB out-selection in Mainstream and Sidestream BNR processes

It's <u>inappropriate</u> to use kinetic parameters associated with sidestream systems to design mainstream systems for N-removal.

Integrating BNR strategies with Nitrospira outselection

- What are the strategies for *Nitrospira* spp. out-selection? (especially in mainstream BNR)
- Using N-cycle intermediates as selective inhibitors for Nitrospira spp. out-selection?

N-cycle intermediate	Produced by	Effect on N-cycle bacteria
Hydroxylamine (NH ₂ OH)	Nitritation	Inhibitory to NOB and possibly to anammox bacteria (AMX)
Nitric oxide (NO)	Nitritation Anammox	Inhibitory to nitrite oxidizing bacteria (NOB)
Hydrazine (N ₂ H ₄)	Anammox	Selectively inhibitory to NOB
		6

Park et. al., 2016

How can we suppress Nitrospira spp.? Intermittent aeration

Yu et al., 2010, 2018

Findings and implications

Comparison of Partial and Full Nitrification Processes Applied for Treating High-Strength Nitrogen Wastewaters: Microbial Ecology through Nitrous Oxide Production

Joon Ho Ahn, Tiffany Kwan, and Kartik Chandran*

Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States

- Hydroxylamine, a principal nitrogenous intermediate in AOB metabolism, significantly inhibited the activity of *Nitrospira* spp.
- Full-scale implications:
 - Mainstream nitritation or deammonification processes: transient NH₂OH exposure (during recovery from anoxic to aerobic zones) might suppress *Nitrospira* spp.
 - Conventional design of BNR processes with alternating anoxic-oxic conditions aligns well with strategies for *Nitrospira* spp. outselection in mainstream energy efficient N-removal processes
 - Nitrous oxide production and emission
 - Need to optimize between single-stage or two-stage partial nitritation-anammox

Nevertheless, challenges remain

pubs.acs.org/journal/estlcu

Letter

Comammox Functionality Identified in Diverse Engineered Biological Wastewater Treatment Systems

Medini K. Annavajhala,^{†,#} Vikram Kapoor,^{‡,§} Jorge Santo-Domingo,[‡] and Kartik Chandran^{*,†}

[†]Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States [‡]Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States

Coding regions assigned to CMX in every system Obtained through whole genome sequencing

New Results

(a)

Follow this preprint

Meta-azotomics of engineered wastewater treatment processes reveals differential contributions of established and novel models of N-cycling

Mee-Rye Park, Medini K. Annavajhala, Kartik Chandran

DC Water Blue Plains "Who" is doing "what"?

- ammonium monooxygenase amo
- hydroxy lamine oxidoreductase hao
- nitrite oxidoreductase 1117
- membrane-bound nitrate reductase na
- periplasmic nitrate reductase nao
- nitrite reductase nir
- nitric oxide reductase nor
- nitrous oxide reductase nos

Alternative approach to nitrite production: Partial Denitratation

<u>Denitratation</u>: halt the denitrification process at a point of <u>maximum NO_2^- accumulation</u>. <u>DNRA</u>: reduce NO_3^- or NO_2^- to NH_4^+ as opposed to further reduced denitrification intermediates.

Engineering Denitratation

	Reactor	Low SRT	Mid SRT	High SRT
	Medium	SBR; Suspended Growth		
	Reactor Working Volume	6 L	12 L	6 L
	Influent COD:NO ₃ ⁻ -N	3.0:1	2.5 - 5.0:1	3.0:1
	SRT	1.5 d	3 d	15 d
	HRT	1 d		
	Temperature	Ambient (22±2°C)		
	рН		7.50±0.05	

- <u>Stoichiometric Limitation</u>
- Varied influent COD:NO₃⁻-N to optimize performance.
- Full denitrification: stoich. $COD:NO_3^-$ N ratio = ~5.9:1.
- Denitratation (2/5 e⁻ req.): stoich. COD:NO₃⁻-N ratio = \sim 2.4.

- Kinetic Limitation
- Varied SRT to investigate kinetic impacts on community enrichment.
- Long SRT promotes <u>microbial diversity</u> via allowance for microorganisms with <u>fast and slow max specific growth rates</u>, thus allowing for <u>enrichment of true</u> <u>denitrifiers</u>.

Impact of influent COD:N on Selective NO2⁻ Accumulation

- Objective was to maximize NO₂⁻ accumulation for delivery to downstream anammox processes as a co-substrate.
- Optimal influent COD:NO₃⁻-N = 3:1
 NaCR=32% (<u>Max. 60% e- eq.</u>)

Nitrate Conversion Ratio (NaCR):

$$NaCR = \left[\frac{3 \cdot (\Delta NO_2^- - N) - 5 \cdot (NO_{3,eff}^- N)}{5 \cdot (NO_{3,inf}^- N)}\right] \times 100\%$$

Stoichiometric limitation was an effective process control to maximize NO_2^- accumulation.

Extent of NO₂⁻ accumulation depends on the COD source and the associated microbial community

Max. NO_2^- accumulation corresponded with *Thauera* sp. enrichment levels.

Impact of kinetic regime on NO₂⁻ accumulation

- Optimal performance occurred at SRT=3 d and influent COD:NO₃⁻-N=3:1.
- Combined stoichiometric and kinetic limitation at SRT=1.5 d may have contributed to NO₃⁻ accumulation.
 o Min. SRT=0.72 d
- Decay at longer SRTs had negligible impact on performance.
 - At SRT=15 d, soluble organic substrate from decay increased the attributable influent COD:NO₃⁻ -N to ~3.7:1

Extent of NO₂⁻ accumulation corresponded with kineticallysupported microbial ecologies.

Conclusions

- The success of shortcut nitrogen removal hinges on two modes of nitrite production
 - Oxidative: partial nitritation; commonly applied for sidestream BNR
 - Reductive: partial denitratation- more amendable especially in mainstream BNR processes and when coupled to anammox
- Engineering strategies oriented to achieve PN or PDN <u>drive</u> the microbial players and pathways
 - Need to pay attention to additional players (CMX) and pathways (N₂O production) that could influence ability to achieve BNR via nitrite

Kartik Chandran, kc2288@columbia.edu; www.columbia.edu/~kc2288

